On the Distributions of the Lengths of the Longest Increasing and Decreasing Subsequences in Random Words
نویسنده
چکیده
We consider the distributions of the lengths of the longest weakly increasing and strongly decreasing subsequences in words of length N from an alphabet of k letters. (In the limit as k → ∞ these become the corresponding distributions for permutations on N letters.) We find Toeplitz determinant representations for the exponential generating functions (on N) of these distribution functions and show that they are expressible in terms of solutions of Painlevé V equations. We show further that in the weakly increasing case the generating function gives the distribution of the smallest eigenvalue in the k × k Laguerre random matrix ensemble and that the distribution itself has, after centering and normalizing, an N → ∞ limit which is equal to the distribution function for the largest eigenvalue in the k × k Gaussian Unitary Ensemble.
منابع مشابه
On the Distributions of the Lengths of the Longest Monotone Subsequences in Random Words
We consider the distributions of the lengths of the longest weakly increasing and strongly decreasing subsequences in words of length N from an alphabet of k letters. (In the limit as k → ∞ these become the corresponding distributions for permutations on N letters.) We find Toeplitz determinant representations for the exponential generating functions (on N) of these distribution functions and s...
متن کامل2 00 3 Longest increasing subsequences in pattern - restricted permutations
Inspired by the results of Baik, Deift and Johansson on the limiting distribution of the lengths of the longest increasing subsequences in random permutations, we find those limiting distributions for pattern-restricted permutations in which the pattern is any one of the six patterns of length 3. We show that the (132)-avoiding case is identical to the distribution of heights of ordered trees, ...
متن کامل3 Longest increasing subsequences in pattern - restricted permutations
Inspired by the results of Baik, Deift and Johansson on the limiting distribution of the lengths of the longest increasing subsequences in random permutations, we find those limiting distributions for pattern-restricted permutations in which the pattern is any one of the six patterns of length 3. We show that the (132)-avoiding case is identical to the distribution of heights of ordered trees, ...
متن کاملLongest Increasing Subsequences in Pattern-Restricted Permutations
Inspired by the results of Baik, Deift and Johansson on the limiting distribution of the lengths of the longest increasing subsequences in random permutations, we find those limiting distributions for pattern-restricted permutations in which the pattern is any one of the six patterns of length 3. We show that the (132)-avoiding case is identical to the distribution of heights of ordered trees, ...
متن کاملIncreasing Subsequences in Nonuniform Random Permutations
Connections between longest increasing subsequences in random permutations and eigenvalues of random matrices with complex entries have been intensely studied. This note applies properties of random elements of the finite general linear group to obtain results about the longest increasing and decreasing subsequences in non-uniform random permutations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999